Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Pulm Circ ; 14(2): e12358, 2024 Apr.
Article En | MEDLINE | ID: mdl-38576776

Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague-Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0-4 weeks of normoxia exposure. Control s rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7-week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4-week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.

2.
Can J Physiol Pharmacol ; 101(9): 447-454, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37581356

Oxidative stress is involved in increased pulmonary vascular resistance (PVR) and right ventricular (RV) hypertrophy, characteristics of pulmonary arterial hypertension (PAH). Copaiba oil, an antioxidant compound, could attenuate PAH damage. This study's aim was to determine the effects of copaiba oil on lung oxidative stress, PVR, and mean pulmonary arterial pressure (mPAP) in the monocrotaline (MCT) model of PAH. Male Wistar rats (170 g, n = 7/group) were divided into four groups: control, MCT, copaiba oil, and MCT + copaiba oil (MCT-O). PAH was induced by MCT (60 mg/kg i.p.) and, after 1 week, the treatment with copaiba oil (400 mg/kg/day gavage) was started for 14 days. Echocardiographic and hemodynamic measurements were performed. RV was collected for morphometric evaluations and lungs and the pulmonary artery were used for biochemical analysis. Copaiba oil significantly reduced RV hypertrophy, PVR, mPAP, and antioxidant enzyme activities in the MCT-O group. Moreover, increased nitric oxide synthase and decreased NADPH oxidase activities were observed in the MCT-O group. In conclusion, copaiba oil was able to improve the balance between nitric oxide and reactive oxygen species in lungs and the pulmonary artery and to reduce PVR, which could explain a decrease in RV hypertrophy in this PAH model.


Hypertension, Pulmonary , Oils, Volatile , Pulmonary Arterial Hypertension , Rats , Male , Animals , Rats, Wistar , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Monocrotaline/adverse effects , Nitric Oxide , Antioxidants/pharmacology , Biological Availability , Lung , Pulmonary Artery , Familial Primary Pulmonary Hypertension , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/drug therapy , Oils, Volatile/pharmacology , Disease Models, Animal
3.
An Acad Bras Cienc ; 93(suppl 4): e20210297, 2021.
Article En | MEDLINE | ID: mdl-34706009

Acute myocardial infarction (AMI) is one of the major causes of heart failure and mortality. Glucocorticoids administration post-infarction has long been proposed, but it has shown conflicting results so far. This controversy may be associated with the glucocorticoid type and the period when it is administered. To elucidate these, the present aims to evaluate if the brief methylprednisolone acetate administration is determinant for heart adaptation after AMI. Male Wistar rats were divided into 3 groups: sham-operated (SHAM); infarcted (AMI); infarcted treated with methylprednisolone acetate (AMI+M). Immediately after surgery, the AMI+M group received a single dose of methylprednisolone acetate (40 mg/kg i.m.). After 56 days, the cardiac function was assessed and lungs, liver and heart were collected to determine rates of hypertrophy and congestion. Heart was used for oxidative stress and metalloproteinase activity analyses. Methylprednisolone acetate attenuated matrix metalloproteinase-2 activity, cardiac dilatation, and prevented the onset of pulmonary congestion, as well as avoided cardiac hypertrophy. Our data indicate that administration of methylprednisolone acetate shortly after AMI may be a therapeutic alternative for attenuation of detrimental ventricular remodeling.


Methylprednisolone , Myocardial Infarction , Animals , Male , Matrix Metalloproteinase 2 , Methylprednisolone/therapeutic use , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Myocardium , Rats , Rats, Wistar , Ventricular Remodeling
4.
Int J Pharm ; 610: 121181, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34653563

Ambrisentan (AMB) is an orphan drug approved for oral administration that has been developed for the treatment of pulmonary arterial hypertension (PAH), a chronic and progressive pathophysiological state that might result in death if left untreated. Lipid-core nanocapsules (LNCs) are versatile nanoformulations capable of loading lipophilic drugs for topical, vaginal, oral, intravenous, pulmonary, and nasal administration. Our hypothesis was to load AMB into these nanocapsules (LNCamb) and test their effect on slowing or reducing the progression of monocrotaline-induced PAH in a rat model, upon oral administration. LNCamb displayed a unimodal distribution of diameters (around 200 nm), negative zeta potential (-11.5 mV), high encapsulation efficiency (78%), spherical shape, and sustained drug release (50-60% in 24 h). The in vivo pharmacodynamic effect of the LNCamb group was evaluated by observing the echocardiography, hemodynamic, morphometric, and histological data, which showed a significant decrease in PAH in this group, as compared to the control group (AMBsolution). LNCamb showed the benefit of reversing systolic dysfunction and preventing vascular remodeling with greater efficacy than that observed in the control group. The originality and contribution of our work reveal the promising value of this nanoformulation as a novel therapeutic strategy for PAH treatment.


Hypertension, Pulmonary , Nanocapsules , Pulmonary Arterial Hypertension , Animals , Female , Hypertension, Pulmonary/drug therapy , Lipids , Nanocapsules/therapeutic use , Phenylpropionates , Pyridazines , Rats
5.
Life Sci ; 284: 119917, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34478759

In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.


Disease Progression , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Thioredoxins/metabolism , Animals , Antioxidants/metabolism , Apoptosis , Cell Survival , Collagen/metabolism , Electrocardiography , Heart Ventricles/metabolism , Heart Ventricles/pathology , Hypertrophy, Right Ventricular/complications , Hypertrophy, Right Ventricular/pathology , Male , Monocrotaline , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Arterial Hypertension/complications , Pulmonary Arterial Hypertension/diagnostic imaging , Rats, Wistar
6.
Hypertens Res ; 44(8): 918-931, 2021 08.
Article En | MEDLINE | ID: mdl-33875858

Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena. Wistar rats were divided into control and MCT groups (60 mg/kg, intraperitoneal), and EVs were isolated from blood on the day of euthanasia (21 days after MCT injections). There was an oxidative imbalance in the RV, brain, and EVs of MCT rats. PAH impaired mitochondrial function in the RV, as seen by a decrease in the activities of mitochondrial complex II and citrate synthase and manganese superoxide dismutase (MnSOD) protein expression, but this function was preserved in the brain. The key regulators of mitochondrial biogenesis, namely, proliferator-activated receptor gamma coactivator 1-alpha and sirtuin 1, were poorly expressed in the EVs of MCT rats, and this result was positively correlated with MnSOD expression in the RV and negatively correlated with MnSOD expression in the brain. Based on these findings, we can conclude that the RV is severely impacted by the development of PAH, but this pathological injury may signal the release of circulating EVs that communicate with different organs, such as the brain, helping to prevent further damage through the upregulation of proteins involved in redox and mitochondrial function.


Extracellular Vesicles , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Brain , Disease Models, Animal , Homeostasis , Hypertension, Pulmonary/chemically induced , Mitochondria , Monocrotaline/toxicity , Oxidation-Reduction , Oxidative Stress , Rats , Rats, Wistar
7.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119039, 2021 06.
Article En | MEDLINE | ID: mdl-33857568

Although a high cumulative dose of Doxorubicin (Dox) is known to cause cardiotoxicity, there is still a lack of understanding of the subcellular basis of this drug-induced cardiomyopathy. Differential effects of Dox on mitochondria and endoplasmic reticulum (ER) were examined in cardiomyocytes, tumor cells, implanted tumors and hearts of normal as well as tumor-bearing animals. Dox increased mitochondrial (Mito) Bax activation at 3 h in the cardiomyocyte without change in the DNA damage inducible transcriptor-3 (DDIT3) expression in the ER. Increased DDIT3 in these Dox-treated cardiomyocytes at 24 h suggested that increased MitoBax may have promoted ER stress related changes in DDIT3. Dissociation of immunoglobulin-binding protein (Bip) from activating transcription factor 6 (ATF6)-Bip complex in the ER was observed as an adaptive response to Dox. In contrast, breast cancer MCF7 cells showed an ER stress response to Dox with increased DDIT3 as early as 3 h which may have triggered a positive feedback activation of ATF6 at 12 and 24 h and promoted Calnexin. At these later time points, increased Bax activation in cancer cells suggested that MitoBax may be controlled by DDIT3 or by Calnexin. DDIT3 response in tumors was evoked by Dox, however this response was inversely correlated with increased Bip and Bax expression in hearts from tumor bearing animals. It is suggested that in Dox-induced cardiotoxicity both mitochondrial and ER stresses play an integral role through a mutual interaction where an inhibition of DDIT3 or Calnexin may also be crucial to achieve Dox resistance in cardiomyocytes.


Apoptosis/drug effects , Doxorubicin/toxicity , Endoplasmic Reticulum Stress/drug effects , Activating Transcription Factor 6/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cardiomyopathies/metabolism , Cardiotoxicity/pathology , Cell Line, Tumor , Doxorubicin/metabolism , Doxorubicin/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/physiology , Female , Humans , Male , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Neoplasms/metabolism , Neoplasms/physiopathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/metabolism
8.
Eur J Pharmacol ; 891: 173699, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33160936

The time-course of pulmonary arterial hypertension in the monocrotaline (MCT) model was investigated. Male rats were divided into two groups: MCT (received a 60 mg/kg i.p. injection) and control (received saline). The MCT and control groups were further divided into three cohorts, based on the follow-up interval: 1, 2, and 3 weeks. Right ventricle (RV) catheterization was performed and RV hypertrophy (RVH) was estimated. The lungs were used for biochemical, histological, molecular, and immunohistochemical analysis, while pulmonary artery rings were used for vascular reactivity. MCT promoted lung perivascular edema, inflammatory cells exudation, greater neutrophils and lymphocytes profile, and arteriolar wall thickness, compared to CTR group. Increases in pulmonary artery pressure and in RVH were observed in the MCT 2- and 3-week groups. The first week was marked by the presence of nitrosative stress (50% moderate and 33% accentuated staining by nitrotyrosine). These alterations lead to an adaptation of NO production by NO synthase activity after 2 weeks. Oxidative stress was evident in the third week, probably by an imbalance between endothelin-1 receptors, resulting in extracellular matrix remodeling, endothelial dysfunction, and RVH. Also, it was found a reduced pulmonary arterial vasodilatory response to acetylcholine after 2 (55%) and 3 (45%) weeks in MCT groups. The relevance of this study is precisely to show that nitrosative and oxidative stress predominate in distinct time windows of the disease progression.


Lung/metabolism , Nitrosative Stress , Oxidative Stress , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Animals , Arterial Pressure , Disease Models, Animal , Disease Progression , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Lung/physiopathology , Male , Monocrotaline , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/physiopathology , Pulmonary Edema/etiology , Pulmonary Edema/metabolism , Pulmonary Edema/physiopathology , Rats, Wistar , Receptor, Endothelin A/metabolism , Time Factors , Vascular Remodeling , Vasodilation
9.
Exp Physiol ; 105(9): 1561-1570, 2020 09.
Article En | MEDLINE | ID: mdl-32667095

NEW FINDINGS: What is the central question of this study? Does thyroid hormone treatment given after myocardial infarction preserve left ventricular function and treadmill exercise performance, and improve parameters of oxidative stress in the right ventricle and lungs of Wistar rats? What is the main finding and its importance? Thyroid hormone treatment improved the performance of the maximum exercise test in infarcted rats and induced effects in the heart and lungs that were similar to those observed with exercise training. This suggests there is a significant value of thyroid hormones for preserving exercise tolerance after myocardial infarction. ABSTRACT: Left ventricular myocardial infarction (MI) provokes damage in the heart and in other tissues, such as right ventricle and lungs. The present study elucidated whether thyroid hormone treatment (THT) may present positive effects in heart and lungs after MI, and whether or not these effects are similar to those of exercise training (ET). Male Wistar rats were divided into four groups: sham operated (SHAM), infarcted (MI), infarcted + exercise training (MIE), and infarcted + thyroid hormones (MIH). A maximum exercise test, left ventricle echocardiography, pulmonary histology, and oxidative stress in the right ventricle and lung were evaluated. THT and ET both reduced left ventricular dilatation and end-diastolic wall stress indexes to a similar extent. MI accentuated the content of macrophages and inflammatory infiltrate in the lungs, which was partially prevented in the MIH and MIE groups. THT and ET presented similar effects in the heart and lungs, and both improved the performance of the maximum exercise test in infarcted animals.


Exercise Test , Myocardial Infarction/therapy , Physical Conditioning, Animal , Thyroid Hormones/pharmacology , Ventricular Function, Left , Animals , Echocardiography , Heart , Lung , Male , Myocardium , Oxidative Stress , Rats, Wistar
10.
Am J Physiol Heart Circ Physiol ; 316(3): H435-H445, 2019 03 01.
Article En | MEDLINE | ID: mdl-30525893

Among the different cardiovascular disease complications, atherosclerosis-induced myocardial infarction (MI) is the major contributor of heart failure (HF) and loss of life. This review presents short- and long-term features of post-MI in human hearts and animal models. It is known that the heart does not regenerate, and thus loss of cardiac cells after an MI event is permanent. In survivors of a heart attack, multiple neurohumoral adjustments as well as simultaneous remodeling in both infarcted and noninfarcted regions of the heart help sustain pump function post-MI. In the early phase, migration of inflammatory cells to the infarcted area helps repair and remove the cell debris, while apoptosis results in the elimination of damaged cardiomyocytes, and there is an increase in the antioxidant response to protect the survived myocardium against oxidative stress (OS) injury. However, in the late phase, it appears that there is a relative increase in OS and activation of the innate inflammatory response in cardiomyocytes without any obvious inflammatory cells. In this late stage in survivors of MI, a progressive slow activation of these processes leads to apoptosis, fibrosis, cardiac dysfunction, and HF. Thus, this second phase of an increase in OS, innate inflammatory response, and apoptosis results in wall thinning, dilatation, and consequently HF. It is important to note that this inflammatory response appears to be innate to cardiomyocytes. Blunting of this innate immune cardiomyocyte response may offer new hope for the management of HF.


Heart Failure/immunology , Immunity, Innate , Myocardial Infarction/immunology , Animals , Apoptosis , Heart Failure/etiology , Humans , Myocardial Infarction/etiology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Oxidative Stress
11.
Free Radic Res ; 52(9): 988-999, 2018 Sep.
Article En | MEDLINE | ID: mdl-30203709

Oxidative stress alters signalling pathways for survival and cell death favouring the adverse remodelling of postmyocardial remnant cardiomyocytes, promoting functional impairment. The administration of pterostilbene (PTS), a phytophenol with antioxidant potential, can promote cardioprotection and represents a therapeutic alternative in acute myocardial infarction (AMI). The present study aims to explore the effects of oral administration of PTS complexed with hydroxypropyl-ß-cyclodextrin HPßCD (PTS:HPßCD complex) on the glutathione cycle, thiol protein activities and signalling pathways involving the protein kinase B (AKT) and glycogen synthase kinase-3ß (GSK-3ß) proteins in the left ventricle (LV) of infarcted rats. Animals were submitted to acute myocardial infarction through surgical ligation of the descending anterior branch of the left coronary artery and received over 8 days, by gavage, PTS:HPßCD complex at dose of 100 mg kg-1 day-1 (AMI + PTS group) or vehicle (aqueous solution with HPßCD) divided into Sham-operated (SHAM) and infarcted (AMI) groups. The results showed that the PBS: HPßCD complex decreased lipid peroxidation, prevented the decrease in thioredoxin reductase (TRxR) activity, and increased the activity of glutathione-S-transferase (GST) and glutaredoxin (GRx). Additionally, the expression of nuclear factor-erythroid two (Nrf2) and p-GSK-3ß was increased, whereas the p-GSK-3ß/GSK-3ß ratio was reduced in the LV of the infarcted animals. Overall, the PTS:HPßCD complex modulates activity of thiol-dependent enzymes and induces to the expression of antioxidant proteins, improving systolic function and mitigating the adverse cardiac remodelling post infarction.


Glycogen Synthase Kinase 3 beta/genetics , Myocardial Infarction/drug therapy , NF-E2-Related Factor 2/genetics , Stilbenes/administration & dosage , Ventricular Function, Left/drug effects , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Apoptosis/drug effects , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/chemistry , Cyclodextrins/administration & dosage , Cyclodextrins/chemistry , Disease Models, Animal , Humans , Lipid Peroxidation/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Phosphorylation/drug effects , Rats , Stilbenes/chemistry , Ventricular Function, Left/genetics , Ventricular Function, Left/physiology
12.
Life Sci ; 196: 93-101, 2018 Mar 01.
Article En | MEDLINE | ID: mdl-29366748

AIMS: This study aimed to investigate whether beneficial effects of thyroid hormones are comparable to those provided by the aerobic exercise training, to verify its applicability as a therapeutic alternative to reverse the pathological cardiac remodeling post-infarction. MATERIALS AND METHODS: Male rats were divided into SHAM-operated (SHAM), myocardial infarction (MI), MI subjected to exercise training (MIE), and MI who received T3 and T4 treatment (MIH) (n = 8/group). MI, MIE and MIH groups underwent an infarction surgery while SHAM was SHAM-operated. One-week post-surgery, MIE and MIH groups started the exercise training protocol (moderate intensity on treadmill), or the T3 (1.2 µg/100 g/day) and T4 (4.8 µg/100 g/day) hormones treatment by gavage, respectively, meanwhile SHAM and MI had no intervention for 9 weeks. The groups were accompanied until 74 days after surgery, when all animals were anesthetized, left ventricle echocardiography and femoral catheterization were performed, followed by euthanasia and left ventricle collection for morphological, oxidative stress, and intracellular kinases expression analysis. KEY FINDINGS: Thyroid hormones treatment was more effective in cardiac dilation and infarction area reduction, while exercise training provided more protection against fibrosis. Thyroid hormones treatment increased the lipoperoxidation and decreased GSHPx activity as compared to MI group, increased the t-Akt2 expression as compared to SHAM group, and increased the vascular parasympathetic drive. SIGNIFICANCE: Thyroid hormones treatment provided differential benefits on the LV function and autonomic modulation as compared to the exercise training. Nevertheless, the redox unbalance induced by thyroid hormones highlights the importance of more studies targeting the ideal duration of this treatment.


Exercise Therapy , Myocardial Infarction/drug therapy , Myocardial Infarction/therapy , Parasympathetic Nervous System/drug effects , Physical Conditioning, Animal , Thyroxine/therapeutic use , Triiodothyronine/therapeutic use , Animals , Echocardiography , Fibrosis , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Male , Myocardial Infarction/diagnostic imaging , Oxidative Stress/drug effects , Parasympathetic Nervous System/physiopathology , Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Wistar , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology
13.
Biomed Pharmacother ; 95: 965-973, 2017 Nov.
Article En | MEDLINE | ID: mdl-28915538

Here we aimed to compare the beneficial effects of T3 and T4 hormone treatment to those provided by aerobic exercise training in Wistar rats post-myocardial infarction (MI). Rats in one group were SHAM-operated and in the other group were subjected to MI surgery. One week after surgery, the MI group animals either received T3 and T4 hormones by gavage or underwent a low intensity aerobic exercise training protocol on a treadmill, and both treatments lasted until 10 weeks after MI. Untreated SHAM-operated and MI groups were also followed for the same duration. The cardiac function was assessed by echocardiography and catheterization, followed by blood collection (to measure T3, T4, and TSH hormones), and euthanasia. The lung, liver, heart, and tibia were collected (to assess hypertrophy and congestion indices). The left ventricle homogenate (without a scar) was used for the analyses of calcium handling proteins. Results showed that enhanced cardiac function was promoted by both interventions, with infarct size reduction, increased ejection fraction, and diastolic posterior wall thickness, but no alterations in heart rate, cardiac output, or T3, T4, and TSH levels. There was a positive force-frequency relationship accompanied by increased α-MHC, as well as decreased HSP70 protein expression. In conclusion, the effects of T3 and T4 hormone treatments were similar, and in some parameters superior, to those provided by the aerobic exercise training. Thus, lower doses of thyroid hormones could be more suitable as a coadjuvant treatment after MI, as a plausible alternative for patients who are intolerant to aerobic exercise training.


Heart Function Tests , Heart/physiopathology , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Physical Conditioning, Animal , Thyroxine/therapeutic use , Triiodothyronine/therapeutic use , Animals , Biological Transport/drug effects , Calcium/metabolism , Cardiac Catheterization , Echocardiography , Heart/drug effects , Heart Ventricles/diagnostic imaging , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Male , Myocardial Contraction/drug effects , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myosin Heavy Chains/metabolism , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Thyrotropin/metabolism , Thyroxine/pharmacology , Triiodothyronine/pharmacology
...